TBB!华东师范大学方俊锋&李晓冬用于高效倒置钙钛矿太阳能电池的厚度不敏感聚合物空穴传输层

文章正文
发布时间:2025-08-28 23:11

近年来,在空穴传输层(HTLs),尤其是自组装单层(SAMs)的辅助下,倒置钙钛矿太阳能电池(PSCs)发展迅速。然而,目前器件性能强烈依赖于 HTL 厚度,其厚度需严格控制在 <5 nm,若 SAM HTL 厚度超过 10 nm,将导致效率大幅损失。在此,华东师范大学方俊锋&李晓冬报道了一种厚度不敏感的聚合物 HTL(P3CT-TBB),通过 1,3,5 - 三(溴甲基)苯(TBB)对聚 [3-(4 - 羧基丁基)噻吩](P3CT)进行 p 型掺杂制备而成。TBB 可从 P3CT 的噻吩链中夺取电子,促进其 p 型掺杂。与对照 P3CT 相比,掺杂后的 P3CT-TBB 薄膜电导率提升约 10 倍。因此,基于 P3CT-TBB 的倒置 PSCs 展现出超过 26% 的最高效率,且无厚度敏感性 —— 当 P3CT-TBB 厚度超过 60 nm 时,PSCs 仍能保持超过 24% 的效率。此外,由于空穴提取能力的提升,器件稳定性也得到改善,在 ISOS-L-2 协议(65°C)下进行 1200 小时最大功率点(MPP)跟踪后,仍能保留约 90% 的初始效率。

一、研究背景与目的

倒置钙钛矿太阳能电池(PSCs)的发展现状效率已达 27%,关键依赖高效空穴传输层(HTL),如自组装单层(SAM)类分子(Me-2PACz 等),但 SAM 厚度需严格控制在~5 nm,>10 nm 时效率从 23% 降至 15%,限制大规模应用。

聚合物 HTL 的挑战虽导电性优于 SAM,但厚度超过 20 nm 时效率仍显著下降,如 P3CT 在 50 nm 时效率仅为初始 60%,开发厚度不敏感 HTL 迫在眉睫。

二、材料设计与制备

P3CT-TBB 的合成通过 1,3,5 - 三 (溴甲基) 苯(TBB)对聚 [3-(4 - 羧基丁基) 噻吩](P3CT)进行 p 型掺杂,TBB 从 P3CT 噻吩链吸电子,促进掺杂。

关键改性效果电导率提升~10 倍(P3CT-TBB 为 1.132 S/m,P3CT 为 0.108 S/m),空穴迁移率提升至 1.27×10⁻³ cm²・V⁻¹・s⁻¹,费米能级下移至 - 4.80 eV,与钙钛矿能级(-5.40 eV)更匹配。

三、性能表征

1、结构与电学表征

FTIR 与 XPS证实 P3CT 与 TBB 的相互作用,S 2p 峰位移表明 P3CT 链带正电。

ESR 与 C-AFMP3CT-TBB 出现单一线性信号,电流分布均匀,平均电流 2.15 nA(P3CT 为 0.25 nA)。

2、能级与载流子传输

UPS 与 KPFMP3CT-TBB 价带顶下移至 - 5.12 eV,接触电位降至 - 300 mV,促进空穴提取。

PL 与 TRPLP3CT-TBB / 钙钛矿的荧光寿命缩短至 492.37 ns(P3CT 为 812.38 ns),载流子提取加快。

3、模块性能

12 cm² 迷你模块效率 21.35%,优于 P3CT 模块的 16.21%。

4、阻抗与光谱

P3CT-TBB 器件串联电阻(10.03-29.73 Ω)远低于 P3CT(18.37-79.53 Ω),EQE 曲线在 > 650 nm 区域响应稳定。

四、稳定性

操作稳定性65°C 下 ISOS-L-2 协议 MPP 跟踪 1200 小时,保留~90% 初始效率(P3CT 仅 750 小时保留 80%)。

热稳定性85°C 氮气环境老化 800 小时,保留~90% 效率,湿气 - 热稳定性良好。

五、结论

P3CT-TBB 通过 TBB 掺杂实现厚度不敏感性,在 16-69 nm 范围内维持 > 24% 效率,为倒置 PSCs 及模块的商业化提供了高效稳定的 HTL 解决方案。

关键问题

为什么 P3CT-TBB 能实现厚度不敏感性?

TBB 对 P3CT 进行 p 型掺杂,从噻吩链吸电子,使 P3CT-TBB 电导率提升约 10 倍(达 1.132 S/m),且能级下移(费米能级 - 4.80 eV),与钙钛矿能级更匹配,减少了厚度增加导致的串联电阻上升和空穴提取障碍,因此在 16-69 nm 厚度范围内效率波动小。

器件制备过程

1. ITO 基板清洗

依次用洗涤剂、去离子水、丙酮、异丙醇超声清洗,每步 20 分钟,氮气吹干后紫外臭氧处理 20 分钟。

2. 空穴传输层(HTL)制备

P3CT 溶液:15 mg/mL 甲醇溶液。

P3CT-TBB 溶液:3 mg TBB 溶于 1 mL P3CT 溶液(15 mg/mL),60°C 搅拌 48 小时,过滤后稀释至不同浓度(对应厚度 16-86 nm,浓度 0.5-13 mg/mL)。

旋涂参数在空气中以 4000 rpm 旋涂 30 秒,100°C 空气退火 10 分钟。

厚度控制通过调节溶液浓度(0.5-13 mg/mL)制备 9、16、22、38、54、69、86 nm 厚度的 HTL。

3. 钙钛矿层制备

前驱体组成1.3 M (FA₀.₉₅MA₀.₀₅)₀.₉₅Cs₀.₀₅Pb (I₀.₉₅Br₀.₀₅)₃(含 20% MACl),具体包括 FAI 201.8 mg、MABr 7 mg、CsI 16.8 mg、PbBr₂ 23.8 mg、PbI₂ 569.4 mg、MACl 21.8 mg,溶于 DMF:DMSO=8:1(v/v)混合溶剂。

旋涂条件氮气手套箱内,先 2000 rpm 旋涂 10 秒,再 4000 rpm 旋涂 20 秒,旋涂 20 秒时滴加 150 μL 氯苯(CB),120°C 空气退火 20 分钟(25°C,湿度 30%)。

钝化处理冷却后用 2 mg/mL PEACl 的 IPA 溶液 4000 rpm 旋涂 30 秒。

4. 电子传输层及电极沉积

PCBM 层10 mg/mL CB 溶液,2000 rpm 旋涂 45 秒。

真空蒸镀转移至真空腔(5×10⁻⁴ Pa),依次蒸镀 C60(30 nm)、TPBi(6 nm)、Cu(100 nm)。

器件面积有效面积 0.09 cm²(Cu 与 ITO 重叠区域),J-V 测试使用 0.0836 cm² 金属掩膜

图 1. P3CT 与 TBB 掺杂的表征

(A) P3CT 和 TBB 的分子结构。

(B) P3CT-TBB 中电荷分布的密度泛函理论(DFT)模拟。

(C) P3CT 和 P3CT-TBB 的 S 2p1/2 和 2p3/2 的 X 射线光电子能谱(XPS)。

(D) P3CT-TBB、P3CT 和 TBB 的电子自旋共振(ESR)曲线。

(E 和 F) (E) P3CT-TBB 和 (F) P3CT 的导电原子力显微镜(C-AFM)映射图。

(G) P3CT-TBB 和 P3CT 的 C-AFM 线轮廓。虚线表示 C-AFM 曲线的位置。

(H) Au/P3CT-TBB (P3CT)/Au 横向器件的电流 - 电压曲线。

图 2. P3CT-TBB 与 P3CT 的能级结构和表面电势

(A 和 B) (A) 二次电子截止和 (B) 费米边缘区域的紫外光电子能谱(UPS)。

(C) 钙钛矿太阳能电池的能级排列。

(D 和 E) (D) P3CT-TBB 和 (E) P3CT 的开尔文探针力显微镜(KPFM)映射图。

(F) P3CT-TBB 与 P3CT 的表面电势分布

图 3. 载流子传输行为的表征

(A 和 B) (A) P3CT-TBB / 钙钛矿与 P3CT / 钙钛矿的光致发光(PL)和 (B) 时间分辨光致发光(TRPL)曲线。

(C 和 D) (C) 基于 P3CT-TBB 和 P3CT 的钙钛矿太阳能电池(PSCs)的瞬态光电流(TPC)和 (D) 莫特 - 肖特基(Mott-Schottky)曲线

图 4. 器件性能

(A) 不同厚度 P3CT 器件的 J-V 曲线及倒置钙钛矿太阳能电池(PSCs)的结构。

(B) 不同厚度 P3CT-TBB 器件的 J-V 曲线。

(C 和 D) 不同厚度 (C) P3CT 和 (D) P3CT-TBB 的 PSCs 的电化学阻抗谱(EIS)曲线。

(E) 孔径面积为 12 cm² 的 P3CT 和 P3CT-TBB 基迷你模块的 J-V 曲线。

(F) 不同厚度 P3CT-TBB 的 PSCs 的外量子效率(EQE)和集成短路电流(Jsc)曲线。

图 5. 器件稳定性

(A) 未封装的 P3CT-TBB 基和 P3CT 基钙钛矿太阳能电池(PSCs)在 65°C 连续光照下进行最大功率点(MPP)跟踪时的操作稳定性。

(B) 未封装的 P3CT-TBB 基和 P3CT 基 PSCs 在 85°C 下的热稳定性

论文标题:Thickness-insensitive polymeric hole-transporting layer for efficient inverted perovskite solar cells

发表期刊:《Joule》

发表时间:2025年7月1日

作者:Zhengbo Cui ∙ Wen Li ∙ Bo Feng ∙ Yunfei Li ∙ Nannan Sun ∙ Wenxiao Zhang ∙ Sheng Fu ∙ Xiaodong Li xdli@phy.ecnu.edu.cn ∙ Junfeng Fang

索比光伏网 https://news.solarbe.com/202507/08/391142.html

责任编辑:zhouzhenkun

倒置钙钛矿太阳能电池 光伏技术

索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

上一篇

3.8亿!浙江海宁钙钛矿/晶硅叠层电池项目获备案!

2025-07-08 09:27:25

下一篇

百川畅银4GW异质结电池项目土地使用权被收回

2025-07-08 10:11:31

推荐新闻

华南农业大学潘振晓AFM:预成核化学浴沉积法制备高性能、高重复性的SnO₂电子传输层用于钙钛矿太阳能电池来源:知光谷 发布时间:2025-08-27 10:35:40

二氧化锡电子传输层因其优异的光电性能已成为钙钛矿太阳能电池中最常用的ETL之一。阐明CBD过程中影响SnO生长的关键机制对于构建高质量、高重复性的SnOETL至关重要。本研究华南农业大学潘振晓等人指出,SnOETL性能和重复性的内在限制源于均相成核和异相成核路径的竞争共存。提升器件性能与重复性:P-CBD法制备的SnOETL具有低缺陷密度和高结晶质量,使碳基钙钛矿电池效率提升至21%,并大幅改善工艺重复性。

钙钛矿

北京航空航天大学张晓亮EES:效率超过19%的FAPbI₃钙钛矿量子点太阳能电池来源:知光谷 发布时间:2025-08-27 10:32:48

甲脒碘化铅钙钛矿量子点因其优异的光电性能和溶液可加工性,在新一代光伏应用中展现出巨大潜力。最终,FAPbIPQDSCs实现了高达19.14%的功率转换效率,为目前该类型电池的最高效率。创纪录器件效率:CSME处理的FAPbIPQDSCs实现19.14%的效率,是目前该类型电池的最高值,同时器件表现出更低的迟滞效应和更高的稳定性。

钙钛矿

西安建筑科技大学,中科院大连化学物理研究所:迈向定制化建筑能源:颜色可调钙钛矿光伏窗的技术路径与挑战来源:钙钛矿材料和器件 发布时间:2025-08-26 13:56:14

第一作者简介严楠:2024年6月博士毕业于陕西师范大学材料科学与工程学院,目前为西安建筑科技大学材料科学与工程学院副教授,中科院大连化学物理研究所博士后,主要从事钙钛矿光电材料与器件的研究。

钙钛矿

刷新效率纪录!原位涂布策略实现高性能柔性全钙钛矿叠层组件来源:钙钛矿追光者 发布时间:2025-08-26 11:58:46

01研究背景与挑战柔性钙钛矿太阳能电池与刚性基底太阳能电池相比,柔性钙钛矿电池尤其是大面积模块的效率仍显著落后。03文章图文信息Figure1:添加剂辅助原位刮涂策略图1|添加剂辅助原位刮涂技术a.柔性基底上宽带隙钙钛矿薄膜埋藏界面的扫描电镜图像。箭头指示最大功率连续涂覆样品相较于对照组钙钛矿薄膜的峰位移方向。Figure4:柔性单结与叠层电池器件性能图4|柔性钙钛矿器件的性能与光电特性。

柔性钙钛矿太阳能电池

北航殷鹏刚&黄建媚AFM:聚合物协调PbI₂在甲脒基钙钛矿吸收层中的应用:高效稳定太阳能电池来源:知光谷 发布时间:2025-08-26 11:35:22

本研究北京航空航天大学殷鹏刚和黄建媚等人将多功能聚合物聚醋酸乙烯酯引入PbI前驱体,其丰富的羰基基团有效抑制PbI结晶并释放应力,延缓其与铵盐的反应速率,从而调控钙钛矿薄膜的结晶过程。效率与稳定性双突破:器件PCE达25.79%,创两步法制备FA基钙钛矿电池新高;PVAc在晶界处的钝化作用使器件存储、热稳定性和运行稳定性显著提升。

钙钛矿

昆明理工祝星&王华&陈江照&朱焘AFM:可乐定提升钙钛矿太阳能电池效率与稳定性来源:知光谷 发布时间:2025-08-26 11:31:45

钙钛矿薄膜中不可控的结晶过程会产生大量缺陷,尤其是顶部和底部界面处的缺陷,导致界面复合,严重损害器件效率与长期稳定性。

钙钛矿

纤纳光电颜步一&浙江大学史乐Sci. Adv.:钙钛矿太阳能电池制造中高价值有机溶剂的回收与再利用来源:知光谷 发布时间:2025-08-25 16:32:52

高价值有机溶剂的回收在多个行业中至关重要但极具挑战性。以钙钛矿太阳能电池为例,其制造过程中需大量使用如N,N-二甲基甲酰胺等溶剂。为此,纤纳光电颜步一和浙江大学史乐等人开发了一种多级气隙膜蒸馏系统,利用工业废热从废液中高效回收DMF。该MAMD系统有望显著降低环境足迹,推动钙钛矿太阳能电池的可持续制造。

钙钛矿

Nat Commun:金属卤化物钙钛矿纳米晶的自主多机器人合成与优化来源:知光谷 发布时间:2025-08-25 16:09:20

金属卤化物钙钛矿纳米晶在光学性能上具有极高的可调性,但充分挖掘其潜力面临着庞大而复杂的合成参数空间的挑战。Rainbow为高性能金属卤化物钙钛矿纳米晶的加速、数据驱动的发现与逆向合成提供了一个通用蓝图,助力下一代光子材料和技术的按需实现。

钙钛矿

华东理工大学AFM:无需空穴传输层!丝网印刷碳基钙钛矿电池效率20.8%+电压1.067V创纪录!来源:知光谷 发布时间:2025-08-25 15:57:52

在采用介观TiO/ZrO/碳结构优化大规模制备的可印刷碳基钙钛矿太阳能电池中,滴铸成膜和无空穴传输层的特性导致钙钛矿结晶不理想,限制了其光电转换效率,并阻碍了有效的电荷传输和提取。最终p-MPSC实现了20.8%的PCE和1.067V的开路电压,这是迄今有机-无机杂化p-MPSCs报道的最高VOC。创纪录的高开路电压与效率:实现p-MPSC器件20.8%的PCE和1.067V,为有机-无机杂化碳基钙钛矿电池的最高开路电压,同时大面积组件效率达17.1%。

钙钛矿

住友重工推出用于薄膜钙钛矿光伏的反应性等离子体技术来源:钙钛矿材料和器件 发布时间:2025-08-25 15:04:01

这家总部位于东京的公司在本周的一份新闻稿中表示,该方法使用具有成本效益的材料和低影响工艺,解决了扩大钙钛矿技术大规模生产的主要障碍。SHI指出,电子传输层通过允许钙钛矿层中产生的电子有效地移动到电极而起着至关重要的作用。

钙钛矿

Angew: 定制化双位点钝化分子降低钙钛矿太阳能电池的界面能损来源:先进光伏 发布时间:2025-08-25 10:07:13

论文概览对钙钛矿太阳能电池界面的有效优化能降低载流子传输能垒并抑制非辐射复合,进而实现对器件性能表现的显著提升。此外,双钝化位点偶极官能化分子调节界面并实现能级梯度排列,以促进载流子提取和运输。通过双位点钝化的正置钙钛矿太阳能电池实现了25.85%的光电转换效率,有效面积为1cm2的大面积器件效率达24.79%。